Non-sinusoidal Periodic Waveforms



Overview about non-sinusoidal periodic waveforms.

Sine wave model


$$ \large x(t)=A sin(2\pi f t + \phi)=A sin(\omega t + \phi) $$

where,

Square wave


$$ \large x_\textrm{sqr}(t)=A \textrm{sgn}(sin(\omega t + \phi)) \quad ; \quad sgn(x)=\begin{cases}\begin{aligned} -1, x<0 \\\ 0, x=0 \\\ 1, x>0 \end{aligned}\end{cases} $$

Harmonic form


$$ \large x_\textrm{sqrh}(t)=A\frac{4}{\pi}\sum_{k=1}^{\infty}\frac{sin((2k-1)(\omega t + \phi))}{2k-1} $$

Triangular wave


$$ \large x_\textrm{tri}(t)=A\frac{2}{a}\left(t+\frac{\phi}{\omega}-a\left\lfloor\frac{t}{a}+\frac{\phi}{\omega a}+\frac{1}{2}\right\rfloor\right)(-1)^{\left\lfloor\frac{t}{a}+\frac{\phi}{\omega a}+\frac{1}{2}\right\rfloor} \quad ; \quad a=\frac{1}{2f} $$

Harmonic form


$$ \large x_\textrm{trih}(t)=A\frac{8}{\pi^2}\sum_{k=0}^{\infty}(-1)^k \frac{sin((2k+1)(\omega t + \phi))}{(2k+1)^2} $$

Sawtooth wave


$$ \large x_\textrm{saw}(t)=2A\left(\frac{t}{a}+\frac{\phi}{\omega a}-\left\lfloor\frac{t}{a}+\frac{\phi}{\omega a}+\frac{1}{2}\right\rfloor\right) \quad ; \quad a=\frac{1}{f} $$

Harmonic form


$$ \large x_\textrm{sawh}(t)=\frac{A}{2}-\frac{A}{\pi}\sum_{k=1}^{\infty}(-1)^k \frac{sin(k(\omega t + \phi))}{k} $$

Pulse wave


$$ \large x_1=\left(t+\frac{\phi}{2\pi f}\right) \ mod \ T \quad ; \quad x_\textrm{pulse}(t)=Ax_1 \quad ; \quad x_1=\begin{cases}\begin{aligned} 1, x_1\leq\tau \\\ 0, x_1>\tau \end{aligned}\end{cases} $$

Harmonic form


$$ \large x_\textrm{pulseh}(t)=A\left[\frac{\tau}{T}+\sum_{k=1}^{\infty}\frac{2}{k\pi}sin\left(\frac{\pi k\tau}{T}\right)cos\left(\frac{2\pi k}{T}\left(t+\frac{T\phi}{2\pi}-\frac{\tau}{2}\right)\right)\right] $$